专家学者_山东第一医科大学机构知识库
专家学者_山东第一医科大学机构知识库
高级检索 在检索结果中检索
全部字段 题名 作者 关键词 摘要 学术ID
Research on imbalance machine learning methods for MR[Formula: see text]WI soft tissue sarcoma data
作者
Xuanxuan Liu Li Guo Hexiang Wang Jia Guo Shifeng Yang Lisha Duan
作者单位
Affiliations 1 College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China. 2 College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China. ally_kwok@16 com. 3 Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China. 4 Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. 5 Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Qingdao, China.
刊名
BMC medical imaging
年份
2022
卷号
Vol.22 No.1
页码
149
ISSN
1471-2342
关键词
Extremely randomized trees Imbalanced data Machine learning Radiomics Soft tissue sarcoma.
摘要
Background: Soft tissue sarcoma is a rare and highly heterogeneous tumor in clinical practice. Pathological grading of the soft tissue sarcoma is a key factor in patient prognosis and treatment planning while the clinical data of soft tissue sarcoma are imbalanced. In this paper, we propose an effective solution to find the optimal imbalance machine learning model for predicting the classification of soft tissue sarcoma data. Methods: In this paper, a large number of features are first obtained ...更多
文献类型
期刊
浏览量
2
列表公用js 卡片页统计
专家学者_山东第一医科大学机构知识库
卡片页统计