专家学者_山东第一医科大学机构知识库
专家学者_山东第一医科大学机构知识库
高级检索 在检索结果中检索
全部字段 题名 作者 关键词 摘要 学术ID
A Multicenter Study on Intraoperative Glioma Grading via Deep Learning on Cryosection Pathology
作者
Xi Liu Tianyang Sun Hong Chen Shuai Wu Haixia Cheng Xiaojia Liu Qi Lai Kun Wang Lin Chen Junfeng Lu Jun Zhang Yaping Zou Yi Chen Yingchao Liu Feng Shi Lei Jin Dinggang Shen Jinsong Wu
作者单位
7Shenzhen Institute of Advanced Technology, Chinese Academy Sciences, Shenzhen, China 11Department of Neurosurgery, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China 5Department of Research and Development, United Imaging Intelligence Co Ltd, Shanghai, China 1Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China 9Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China 10Wuhan Zhongji Biotechnology Co Ltd, Wuhan, China 2National Center for Neurological Disorders, Shanghai, China 6Department of Pathology, Huashan Hospital Affiliated to Fudan University, Shanghai, China 3Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China 8Department of Laws and Regulations, The Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China 4Neurosurgical Institute of Fudan University, Shanghai, China
刊名
Modern Pathology
年份
2025
卷号
Vol.38 No.7
页码
100749
ISSN
0893-3952
关键词
cryosectioned image deep learning glioma multicenter neuropathology
摘要
Intraoperative glioma grading remains a significant challenge primarily due to the diminished diagnostic attributable to the suboptimal quality of cryosectioned slides. Precise intraoperative diagnosis is instrumental in guiding the surgical strategy to balance resection extent and neurologic function preservation, thereby optimizing patient prognoses. This study developed a model for intraoperative glioma grading via deep learning on cryosectioned images, termed intraoperative glioma grading on...更多
文献类型
期刊
列表公用js 卡片页统计
专家学者_山东第一医科大学机构知识库
卡片页统计